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Second-harmonic dielectric response of an antiferroelectric liquid crystal under dc electric fields
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Second-harmonic dielectric response under dc fields in an antiferroelectric liquid-crystal 4-(1-methyl-
heptyloxycarbonyl)phenyl 4-octylcarbonyloxybiphenyl- 4-carboxylate (MHPOCBC) has been investigated.
The second-harmonic response from the amplitude mode in the smectic—CZ phase was observed due to the
symmetry breaking by the application of dc electric fields. A Landau theory was developed in order to analyze
experimentally obtained frequency dispersions. From the analysis we found a softening of the amplitude mode
with increasing the dc field at a temperature close to the smectic-C),-smectic-A phase transition point. It was
turned out that the relaxation frequency of the amplitude mode decreases linearly with the applied electric field.
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I. INTRODUCTION

The response of dielectrics to an external electric field has
been extensively investigated in order to clarify the phenom-
ena related to structural phase transitions in ferroelectric and
antiferroelectric liquid crystals. However, the investigation
was mainly confined to the linear response, which is propor-
tional to the applied field. It can only detect modes which
induce macroscopic polarizations such as the ferroelectric
mode (the tilting fluctuation of the director toward the direc-
tion perpendicular to the field) and the ferroelectric Gold-
stone mode (the azimuthal fluctuation of the director around
the helical axis) [1-7]. Recently, on the other hand, the non-
linear dielectric spectroscopy has been shown to become a
powerful tool to investigate nonpolar modes related to non-
ferroelectric phase transitions, which are not observable with
the linear one [8—16]. Most of the nonlinear dielectric mea-
surements were performed without applying dc electric
fields. As in solid ferroelectrics, applying an electric field is a
good method to investigate the dielectric properties. Hereaf-
ter, we briefly explain the third-order dielectric spectroscopy
under dc electric fields.

In general, the electric displacement D(r) can be ex-
pressed in terms of the electric field E(z) as

t t t t
D(t):f dT]Sl(t—TI)E(’T])‘l‘f dT]f def dT3

X &3(t = 7,1 = 7yt = ) E(T) E(m) E(73) + -+, (1)

where g(t,) is the linear after-effect function and e5(t,,1,,3)
is the third-order multiple time after-effect function with a
symmetric property with respect to the permutation of the
time variables (¢,,%,,13), which characterizes the nonlinear
response. Here we have assumed that the dielectrics consid-
ered here is nonpolar, which is the case for the sample used
in our experiment. When we apply an electric field such as
E(t)=Epc+E cos wt, Eq. (1) yields
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D(t) = Dy + Re[ D (w)exp(iwt) + Dy(w)exp(i2wr)
+ Ds(w)exp(i3wt) + -], (2)
with
Dy(w) =& (0)E4+ -+, (3a)

D;(w) =Re[{e|(w)E, + 383(0,0,&))E12)CE0 + -} X explion)],
(3b)

3
D;y(w) = Re[{583(0,w, w)EDCE(z) + } X exp(i2wt)} ,

(3c)
1 , .
Ds(w) =Re 233(w,w,w)Eb+ <o ¢ Xexp(iBwr) |,
(3d)
where £,(w;) and &;(w,, w,,w;) are defined as
81((1)1)Ef dre,(m)exp[—iw; 1], (4a)
0

o0 o o0
83((,01,(02,(03) = f dTlf def d7'383(7'1,7'2, T3)
0 0 0

X eXp[— i(wlTl + w7+ (U37'3)]. (4b)

As is seen from Eq. (3), the third-order term in Eq. (1) gen-
erates the fundamental, second, and third harmonics under
the dc electric field. Note that they are all the third-order
responses with respect to the electric field. Without dc elec-
tric field, e3(w, w, w) has been measured in an antiferroelec-
tric liquid-crystal MHPOCBC, and the soft and amplitude
modes related to the smectic-A (Sm-A)-smectic-C’, (Sm-C)
phase transition were successfully observed [14,15]. In addi-
tion, the antiferroelectric Goldstone mode was also observed
in the antiferroelectric phase, smectic-C, (Sm-C}), of
4-(1-methyl-heptyloxycarbonyl) phenyl 4-octylbiphenyl-4-
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carboxylate ~ (MHPOBC) and  4-(I-trifluoromethyl-
heptyloxycarbonyl) phenyl 4-octylbiphenyl-4-carboxylate
(TFMHPOBC) [10,11]. As for &5(0,0, w), it was measured in
the Sm-C;, phase of MHPOCBC. Bourny et al. [17] investi-
gated the dc field dependence of the linear dielectric constant
near the Sm-A—Sm-C;, phase transition point and observed
the amplitude mode in Sm-C’, phase. In this experiment, dc
bias field (Ep ) was changed from O to 1.2 V/um, while the
probe field (E,) was 0.004 V/um. Therefore, at large E,,
higher-order nonlinear contributions to the term of
E- Ey exp(iot) in D(f) may become large so that the coeffi-
cient may deviates from 3&5(0,0, ). In their analysis, how-
ever, the higher-order nonlinearity was considered. It is need-
less to say that the definition of the above nonlinear
dielectric constants is valid only for small E,. and E,,.

Until now there is no report on &5(0,w,w) for studying
the dynamic properties in smectic liquid crystals and even in
solid ferroelectrics. In general, the second-harmonic response
is absent for nonpolar dielectrics. But when subjected to an
external field it can appear due to the symmetry breaking.
This paper will report the emergence of the second-harmonic
response under dc fields in an antiferroelectric liquid-crystal
MHPOCBC. In order to analyze the experimentally observed
frequency dispersions we derived the expression for
&3(0,w, ) in the Sm-C’, phase from the phenomenological
theory as given in the next section. From the simultaneous
measurements of fundamental and second-harmonic re-
sponse and using the theory we describe the behavior of
relaxation modes under dc fields close to the Sm-C},—Sm-C
phase transition, particularly the amplitude mode which is
not reported yet.

II. THEORY

We can derive the expression for &3(0,w,w) from the
phenomenological theory used for &3(w,w, ) in the Sm-C,,
phase as mentioned in our previous papers [14,15]. The deri-
vation is almost the same; the applied electric field is E(z)
=Epc+E, cos wt for the former, while E(f)=E cos wt for
the latter. Hereafter, we will not repeat the derivation but
only show the results.

The linear dielectric constant &;(w) and the third-order
dielectric for the second-order harmonic &5(0, w,w) are, re-
spectively, given as

ga
ei(w)=xr+e, + Ef% + X_?)‘_?Xf(w)’ (5a)

8
£5(0,0,w) = 553[20(20), )c(0, ) x,(w)

+c2w,0)c(w,w) x,2w)]

+b f)(_?-)\_:;- X(20) x @) xA0). (5b)

with
Xolw) = (@+iwy,)™, (6a)
xAw) = (@, + iw‘Yf)_l, (6b)
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g, 1
c(og,0) = Za - E’?X,%A;Xf(%)Xf(wz)» (7)
where x,(®) and x/{(w) are, respectively, the susceptibilities
of the amplitude mode and the ferroelectric mode, and the
parameters such as a, ﬁf, etc., which appear in the free en-
ergy, should be referred to Refs. [14,15]. Furthermore, & is
the spontaneous tilt angle, £, and g, are, respectively, the
dielectric constant perpendicular to molecules and the dielec-
tric anisotropy, 7y, and v are, respectively, the viscosity co-
efficients of the amplitude and ferroelectric modes. The am-
plitude mode modifies the tilt angle in the same way in each
smectic layer, producing no polarization, while the ferroelec-
tic mode induces polarization. Therefore, the latter is detect-
able by the linear dielectric measurement as is seen from Eq.
(5a), but the former is not. From Eq. (5b), however, the am-
plitude mode can be observed by the second-harmonic di-
electric response. The first term of the right-hand side in Eq.
(5b) originates in the amplitude mode and is a linear function
of the susceptibilities of the amplitude mode for w and 2w,
Xa(®) and x,(2w).

III. EXPERIMENTAL

The sample used in the present experiment was MH-
POCBC. The phase sequence of MHPOCBC without electric
field is Sm-A (105.5 °C) Sm-C’, (99.5 °C) Sm-C}. The ex-
perimental results presented here were all performed in com-
mercially available cells (EHC). The cell gap was about
25 wm, and the area of electrodes with ITO (indium tin
oxide) and polyimide alignment layers was 4 X4 mm?. The
sample was introduced into a cell in the isotropic phase and
it was cooled down slowly to the Sm-A phase. The sample
cell was mounted on a hot stage (Instec HS1).

Regarding the nonlinear experiments, there is no device
commercially available for measurements of the nonlinear
dielectric constants at various frequencies. In general, the
nonlinear response is much smaller than the linear one so
that a precise measurement of nonlinear response is difficult
to be done. In order to overcome this difficulty, a new mea-
surement system was developed. The homemade measure-
ment system of nonlinear dielectric constant was described
in detail in the previous work [15]. This system utilizes the
vector signal analyzer (HP89410A) which allows one to ob-
tain the amplitudes and the phases of the fundamental,
second-, and the third-harmonic dielectric responses simulta-
neously. The frequency dispersions in all phases of the
sample were measured from 100 Hz to 1 MHz at stabilized
temperatures on cooling process with a step of 0.5 °C. The
driving ac electric field was kept at 0.28 V/um. Since the
limitation of the equipment, the dc field was applied up to
0.64 V/um.

IV. DISCUSSION

Figure 1 shows the temperature dependences of the real
parts of D(w) without dc field and D,(w) with dc fields of 0
and 0.36 V/um, measured at 1 kHz. Note that from Eq. (3),
D,(w) without dc field is proportional to the linear dielectric
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FIG. 1. Temperature dependences of the real parts of D;(w) and
D,(w) measured simultaneously on cooling process at the frequency
of 1 kHz. T, indicates the transition point from the Sm-A phase to
Sm-C’, phase as decreasing the temperature.

constant, &,(w). Three temperature regions are recognized,
corresponding to the paraelectric Sm-A, Sm-C’, and antifer-
roelectric Sm-C); phases. The transition temperature between
the Sm-A and Sm-C,, phases, T,, is identified from the peak
of the linear dielectric constant [15]. The transition from
Sm-C’, phase to the Sm-C}, phase is recognized as a steep
decrease in the linear dielectric constant at about 7-T.
=-6 °C.

The linear dielectric constant increases gradually in the
Sm-A phase as the transition point is approached and takes a
maximum, and then it decreases in the Sm-C’, phase as has
been reported by Isozaki et al. [18]. The linear dielectric
constant is proportional to the susceptibility of the ferroelec-
tric mode, )(f(a)) [15]. Therefore, this gradual increase with
decreasing temperature in the Sm-A phase indicates the par-
tial softening of the ferroelectric mode.

As for the second-harmonic response D,(w), on the other
hand, it strongly depends on the dc field. Without dc field, a
very small response was observed in the measurement. In all
the phases, Sm-A, Sm-C,,, and Sm-C),, +x and —x directions
are identical so that the second-harmonic response should
vanish from the symmetry. The small response may come
from the surface effect or defects, which can bring about the
symmetry breaking. While in the presence of dc field, the
response becomes large and shows a complicated tempera-
ture dependence. In the Sm-C’, phase it increases steeply and
takes a peak just below the transition temperature and then
decrease with decreasing the temperature. At 2 °C below the
transition point, the value becomes zero and the sign changes
to negative. With further decreasing temperature, the sign
changes from negative to positive near the transition point to
Sm-C}, phase. This temperature dependence of the second-
harmonic response under dc field is almost the same as the
third-harmonic dielectric response without dc field [15]. This
is natural because the second-harmonic response with dc
electric field and the third-harmonic one, &;(w,w, ), with-
out dc electric field are both a linear function of the linear
susceptibility of the amplitude mode, which may have the
dominant temperature dependence.

Next, the typical frequency dispersions of the fundamen-
tal, second-, and third-harmonic dielectric responses at T
-T.=-0.5 °C in the Sm-C,, phase are shown in Fig. 2 with-

PHYSICAL REVIEW E 81, 031710 (2010)

20
pese (@)
151
_ 0 (V/um)
é 10 + O Real
o O Imaginary
—— Fitting
] &M\
0 eepooeRfeanePPRT i +HHHHH——HHHH
-9
6x10” - T-T,=-0.5°C (b)
—
E ot
e
27
DN

0 -I-“OOOOOOOO000‘00‘00'0E‘égb'ﬁ@ﬁﬁa@@gggﬂannﬂgﬂﬂ
o

poo00000000000008

T (©)

o
N

5x10

—_— 4--

o

> 1

z 3

-~ 2__

3 1

e o

§« 0 w

w"’ 1T T T BT B
T T T

10° 10° 10* 10° 10°

Frequency (Hz)

FIG. 2. Typical frequency dispersions of (a) &,(w), (b) Dy(w),
and (c) &3(w, w, w) obtained at T-T,=-0.5 °C in the Sm-C’, phase
at zero dc field.

out dc field and in Fig. 3 with dc field. It is seen from Figs.
2(a) and 3(a) that only one Debye-type relaxation mode,
which is a homogeneously tilting mode, i.e., the ferroelectric
mode, is involved in the linear dielectric constant in the mea-
sured frequency region. A slight increase in dielectric con-
stant at low frequencies should be due to ionic conduction.

As for the second-harmonic response, it is almost zero
without dc electric field as shown in Fig. 2(b). Note that in
Fig. 2(b) D,(w) is shown instead of &5(0,w,w) because of
zero dc electric field. While in the presence of dc electric
field [Fig. 3(b)], we obtained a dispersion different from that
of the linear one. This dispersion is similar to the third-
harmonic ones without dc field [Fig. 2(c)] and with dc field
[Fig. 3(c)], indicating that both the second- and third-
harmonic responses originate in the linear susceptibility of
the amplitude mode, as was theoretically predicted. At the
limit of w—0, &3(w,w,w) and &3(0,w,w) should be the
same. They are almost the same as shown in Figs. 3(b) and
3(c). The discrepancy may come from the higher-order non-
linearities.

In our previous paper [15], the expression for &;(w, w, w)
under zero dc field in the SmC;, phase was derived to obtain
the relaxation frequency of the amplitude mode from experi-
mentally obtained frequency dispersions. The amplitude
mode was confirmed to become soft near the transition point.
The solid lines in Figs. 2(c) and 3(c) are obtained by the
fittings. Here, let us fit the dispersion curve in Fig. 3(b) to
Eq. (5b) in order to compare the relaxation frequencies ob-
tained from the second and third harmonics. Using Egs. (6a),
(6b), and (7), Eq. (5b) is rewritten as
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FIG. 3. Typical frequency dispersions of (a) &;(w), (b)
£3(0,w, ), and (¢) &3(w,w,w) obtained at T—T,=-0.5 °C in the
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p
1+ (iwfa)ﬁﬂ(l N (1+2w7)(1 + ia)Tf)>

£5(0,w,w) =

A
X (1 L >+ — 3
l+iowr/ 1+(i2w7,)"

i (e
1 +i207; (1 +ioT)

Af
(1+207)(1 +iwT)’

(8)

where 7, and 7; are the relaxation times of the amplitude and
ferroelectric modes, respectively. A distribution parameter 3,
has been introduced. There were many adjustable parameters
so that we first determined 7, from the linear dielectric dis-
persion in Fig. 3(a) by using the following equation:

+ + ,
1+ (inf)Bf (iwT)°

)

81(0)) =&

where the last term has been added to take the conductivity
into account, and &, is the dielectric constant at the high
frequency limit, Ay is the dielectric strength, and By and &
are distribution parameters. The fitting results using the least-
squares method are shown by solid lines in Fig. 3(a). The
linear dielectric dispersion is well fitted to Eq. (9), and the
distribution parameter [; was almost 1. The second-
harmonic dielectric response is also reproduced by Eq. (8)
except at low frequencies, where the ionic conduction be-
comes large. The relaxation frequencies of the amplitude
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FIG. 4. Dependence of the imaginary part of D)(w) on dc field
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mode, (277,)!, obtained from Figs. 2(c) and 3(b) are, re-
spectively, 38 and 31 kHz, which are in good agreement.
The frequency dispersions of D}(w) at different dc elec-
tric fields in the raising process of the field measured at T
-T.=-0.5 °C was shown in Fig. 4. As mentioned above, a
very small second-harmonic dielectric response was ob-
served at zero dc field, and the strength becomes larger with
increasing the dc field. It was reported that at large dc fields
the Sm-C’, phase is changed into Sm-C [17]. However, in the
present experiment the field-induced phase transition was not
attained because of the limitation of our measurement sys-
tem. From Fig. 4 it is clearly seen that the peak frequency
shifts to lower frequencies with increasing the dc field.
Analysis using Eq. (8) are valid only for small E,,. and E,,.
In our experiments Ep was increased to considerably large
values. However, we may be able to obtain an approximate
value of 7,. The solid lines in Fig. 4 are fitted results. Figure
5 shows the dc field dependences of the relaxation frequen-
cies of the ferroelectric mode and the amplitude mode, f,
=Q2mr) " and f,,=(277,)"!, obtained from the fitting. The
relaxation frequency of the amplitude mode, f, ,, decreases
with increasing the dc field. It seems to become zero toward
the field-induced transition point from Sm-C) to Sm-C
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FIG. 5. Dc field dependences of the relaxation frequencies ob-
tained from the linear and the second-order nonlinear dielectric
spectroscopies. f,; and f,, are the relaxation frequencies of the
ferroelectric mode obtained from the fitting result using Eq. (9) and
the amplitude mode using Eq. (8), respectively.
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around 0.81 V/um, namely, the softening of amplitude
mode takes place. In the high dc field region, the Curie-
Weiss law with respect to the dc electric field holds for this
mode. For the ferroelectric mode, on the other hand, partial
softening is seen.

We notice an interesting fact that the slopes of the
amplitude [-65.9*+2.4 kHz/(V/um)] and ferroelectric
[-67.4+2.5 kHz/(V/um)] modes are almost the same. A
similar result was obtained in the temperature dependences
of the relaxation frequencies of the soft and ferroelectric
modes in the Sm-A phase [15]. The temperature dependence
was explained in terms of a discrete model [19], but the field
dependence is not yet clarified at present.

V. CONCLUSIONS

The second-harmonic dielectric measurements under dc
fields have been performed in the Sm-C;, phase. The second-
harmonic dielectric response did not exist at zero dc field,
while in the presence of dc electric field it emerged due to
the symmetry breaking. We developed a phenomenological
theory and obtained the expression for the second-harmonic
dielectric response under dc electric fields, &3(0,w,w),
which turned out to be a linear function of the linear suscep-
tibility of the amplitude mode as well as the third-harmonic
response, £3(w, , w). From the analysis of the obtained fre-
quency dispersions, it was found that a softening of ampli-
tude mode takes place and in the high dc field region the
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Curie-Weiss law with respect to dc electric field holds for
this mode. On the other hand, a partial softening was seen for
the ferroelectric mode. The slopes of the field dependences
of the amplitude and ferroelectric modes are almost the
same. Theoretical considerations based on the discrete model
will be necessary to clarify the dc field dependence of the
modes. At the end of this paper, we would like to emphasize
that the second-harmonic generation (SHG) is very sensitive
to the symmetry change from nonpolar to polar states, as
clearly shown in Figs. 1 and 4. In the present paper the
symmetry change was caused by applying dc electric fields,
however SHG measurements will make it possible to ob-
serve symmetry changes brought about not only by the dc-
bias electric fields but also by the other causes such as the
presence of defects. The optical SHG measurement is widely
used for detecting them, but the dielectric one is not yet.
Since the latter has an additional advantage that it can easily
give frequency dispersions, we believe it will become a pow-
erful tool.
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